1,008 research outputs found

    A SPAD-Based Photon Detecting System for Optical Communications

    Get PDF
    A small array of single photon avalanche detectors (SPADs) has been designed and fabricated in a standard 0.18 ÎŒm CMOS process to test a new photon detecting system for optical communications. First numerical results are presented which show that using arrays of SPADs reduces the optical power density required at the receiver. Experimental results then show that the new system preserves the photon counting ability of the SPADs. Finally a simple method is presented which can be used to estimate the size of array needed to achieve a particular target bit error rate at a specific optical power density. Together these results indicate that by replacing the avalanche photodiode in a receiver with the new system it will be possible to count the received photons

    Tagging single muons and other long-flying relativistic charged particles by ultra-fast timing in air Cherenkov telescopes

    Get PDF
    Atmospheric air Cherenkov telescopes are successfully used for ground-based, very high-energy (VHE) gamma ray astronomy. Triggers from the so-called single muon and other long-flying relativistic charged particle events are an unwanted background for the Cherenkov telescope. Because of low rate at TeV energies the muon background is unimportant. It is much more intense for telescopes with high photon sensitivity and low energy threshold. Below a few hundred GeV energy, the so-called muon background becomes so intense, that it can deteriorate the sensitivity of telescopes (the so-called muon-wall problem). From general considerations it can be anticipated that the signature of these particles should be a light pulse with a narrow time structure. In fact, simulations show that the pulses from muons have a very narrow time profile that is well below the time resolutions of nearly all currently operating telescopes. In this report we elaborate on the time profile of Cherenkov light from the so-called single muons and show that a telescope with ultra-fast time response can open a new dimension allowing one to tag and to reject those events.Comment: Accepted by Astroparticle Physic

    Fixed-parameter tractability of multicut parameterized by the size of the cutset

    Get PDF
    Given an undirected graph GG, a collection {(s1,t1),...,(sk,tk)}\{(s_1,t_1),..., (s_k,t_k)\} of pairs of vertices, and an integer pp, the Edge Multicut problem ask if there is a set SS of at most pp edges such that the removal of SS disconnects every sis_i from the corresponding tit_i. Vertex Multicut is the analogous problem where SS is a set of at most pp vertices. Our main result is that both problems can be solved in time 2O(p3)...nO(1)2^{O(p^3)}... n^{O(1)}, i.e., fixed-parameter tractable parameterized by the size pp of the cutset in the solution. By contrast, it is unlikely that an algorithm with running time of the form f(p)...nO(1)f(p)... n^{O(1)} exists for the directed version of the problem, as we show it to be W[1]-hard parameterized by the size of the cutset

    Broadband study of blazar 1ES 1959+650 during flaring state in 2016

    Full text link
    Aim : The nearby TeV blazar 1ES 1959+650 (z=0.047) was reported to be in flaring state during June - July 2016 by Fermi-LAT, FACT, MAGIC and VERITAS collaborations. We studied the spectral energy distributions (SEDs) in different states of the flare during MJD 57530 - 57589 using simultaneous multiwaveband data to understand the possible broadband emission scenario during the flare. Methods : The UV/optical and X-ray data from UVOT and XRT respectively on board Swift and high energy Îł\gamma-ray data from Fermi-LAT are used to generate multiwaveband lightcurves as well as to obtain high flux states and quiescent state SEDs. The correlation and lag between different energy bands is quantified using discrete correlation function. The synchrotron self Compton (SSC) model was used to reproduce the observed SEDs during flaring and quiescent states of the source. Results : A decent correlation is seen between X-ray and high energy Îł\gamma-ray fluxes. The spectral hardening with increase in the flux is seen in X-ray band. The powerlaw index vs flux plot in Îł\gamma-ray band indicates the different emission regions for 0.1 - 3 GeV and 3-300 GeV energy photons. Two zone SSC model satisfactorily fits the observed broadband SEDs. The inner zone is mainly responsible for producing synchrotron peak and high energy Îł\gamma-ray part of the SED in all states. The second zone is mainly required to produce less variable optical/UV and low energy Îł\gamma-ray emission. Conclusions : Conventional single zone SSC model does not satisfactorily explain broadband emission during observation period considered. There is an indication of two emission zones in the jet which are responsible for producing broadband emission from optical to high energy Îł\gamma-rays.Comment: 11 pages, 12 figures, Accepted in A&

    A tight lower bound for steiner orientation

    Get PDF
    In the STEINER ORIENTATION problem, the input is a mixed graph G (it has both directed and undirected edges) and a set of k terminal pairs T. The question is whether we can orient the undirected edges in a way such that there is a directed s⇝t path for each terminal pair (s,t)∈T. Arkin and Hassin [DAM’02] showed that the STEINER ORIENTATION problem is NP-complete. They also gave a polynomial time algorithm for the special case when k=2 . From the viewpoint of exact algorithms, Cygan, Kortsarz and Nutov [ESA’12, SIDMA’13] designed an XP algorithm running in nO(k) time for all k≄1. Pilipczuk and Wahlström [SODA ’16] showed that the STEINER ORIENTATION problem is W[1]-hard parameterized by k. As a byproduct of their reduction, they were able to show that under the Exponential Time Hypothesis (ETH) of Impagliazzo, Paturi and Zane [JCSS’01] the STEINER ORIENTATION problem does not admit an f(k)⋅no(k/logk) algorithm for any computable function f. That is, the nO(k) algorithm of Cygan et al. is almost optimal. In this paper, we give a short and easy proof that the nO(k) algorithm of Cygan et al. is asymptotically optimal, even if the input graph has genus 1. Formally, we show that the STEINER ORIENTATION problem is W[1]-hard parameterized by the number k of terminal pairs, and, under ETH, cannot be solved in f(k)⋅no(k) time for any function f even if the underlying undirected graph has genus 1. We give a reduction from the GRID TILING problem which has turned out to be very useful in proving W[1]-hardness of several problems on planar graphs. As a result of our work, the main remaining open question is whether STEINER ORIENTATION admits the “square-root phenomenon” on planar graphs (graphs with genus 0): can one obtain an algorithm running in time f(k)⋅nO(k√) for PLANAR STEINER ORIENTATION, or does the lower bound of f(k)⋅no(k) also translate to planar graphs

    The ÎŒNTS: a wearable, modular, high-density diffuse optical tomography system

    Get PDF
    We present a wearable, high-density diffuse optical tomography system that can provide a channel density exceeding 6 channels/cm^{2}, with source-detector separations from 10 mm to >60 mm, as measured in-vivo in the adult

    PMH11 PERFORMANCE OF RISK ADJUSTMENT SCALES IN PREDICTING RISK OF HOSPITALIZATION AMONG DEMENTIA PATIENTS: A MEPS STUDY

    Get PDF

    X-ray variability of AGNs in the soft and the hard X-ray bands

    Full text link
    We investigate the X-ray variability characteristics of hard X-ray selected AGNs (based on Swift/BAT data) in the soft X-ray band using the RXTE/ASM data. The uncertainties involved in the individual dwell measurements of ASM are critically examined and a method is developed to combine a large number of dwells with appropriate error propagation to derive long duration flux measurements (greater than 10 days). We also provide a general prescription to estimate the errors in variability derived from rms values from unequally spaced data. Though the derived variability for individual sources are not of very high significance, we find that, in general, the soft X-ray variability is higher than those in hard X-rays and the variability strengths decrease with energy for the diverse classes of AGN. We also examine the strength of variability as a function of the break time scale in the power density spectrum (derived from the estimated mass and bolometric luminosity of the sources) and find that the data are consistent with the idea of higher variability at time scales longer than the break time scale.Comment: 17 pages, 15 Postscript figures, 3 tables, accepted for publication in Ap
    • 

    corecore